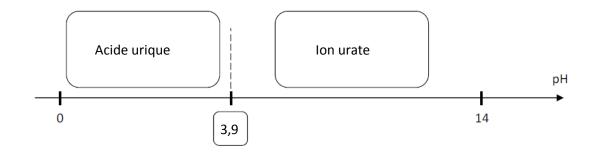
Devoir commun n°1 TSTS

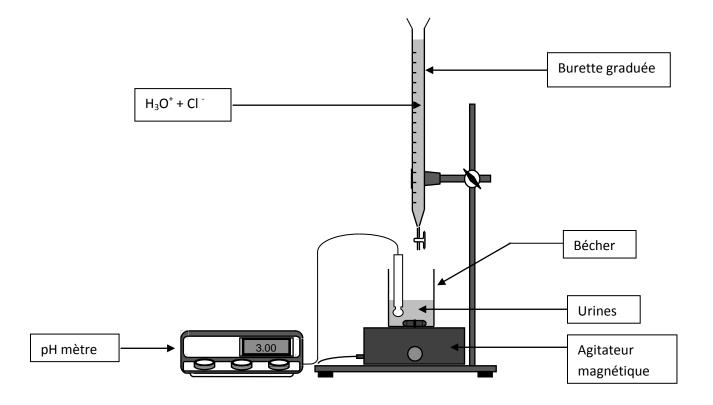
Correction

Partie 1 Etude de l'acide urique (6 noints)

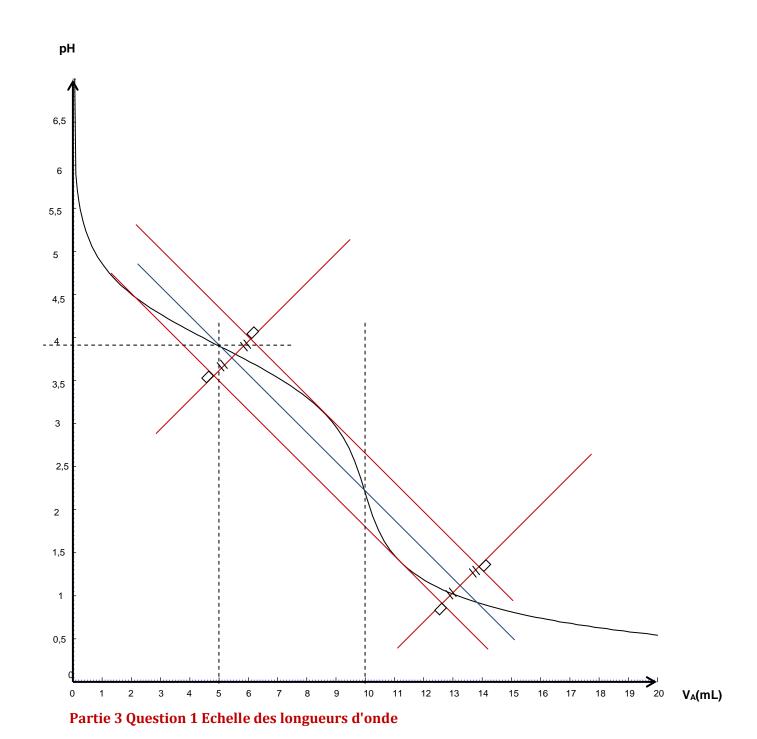
Partie 1 Etude de l'acide urique (6 points)		
Questions	Réponses attendues	
1.1	On dissout l'acide urique. c'est le soluté	
1.2	$n_{ac urique} = \frac{m_{ac urique}}{M_{ac urique}} = \frac{8,4x10^{-2}}{168} = 5,0x10^{-4} \text{ mol}$	
1.3	$C = \frac{n_{\text{ac urique}}}{V_{\text{tot}}} = \frac{5,0x10^{-4}}{0,5} = 1,0x10^{-3} \text{ mol.L}^{-1}$	
1.4	L'acide se transforme en sa base conjuguée en perdant un proton donc formule de la base = $C_5H_3N_4O_3^-$ Ecriture du couple = $C_5H_4N_4O_3^ C_5H_3N_4O_3^-$	
1.5	don du proton : $C_5H_4N_4O_3 \longrightarrow C_5H_3N_4O_3^- + H^+$ gain du proton $H_2O + H^+ \longrightarrow H_3O^+$ Equation bilan $C_5H_4N_4O_3 + H_2O \longrightarrow H_3O^+ + C_5H_3N_4O_3^-$	
1.6	$[H_3O^+] = 10^{-pH} = 10^{-3.9} = 1,3x10^{-4} \text{ mol.L}^{-1}$	
1.7	[H₃O ⁺]≠ c donc l'acide urique est un acide faible	
1.8	Voir feuille annexe	
1.9	pH = pKa donc aucune espèce ne prédomine	
1.10	Solution tampon : pas de variation de pH lors d'un ajout : d'une faible quantité d'acide ou d'une faible quantité de base ou d'une faible quantité d'eau	
Partie 2. Diagnostic d'une hyper uricémie (6points)		
Questions	Réponses attendues	
2.1	pH>pKa c'et donc la forme basique soit l'ion urate qui est prédominant dans les urines	
2.2	Voir feuille annexe	
2.3	Voir feuille annexe V _E = 10 mL	
2.4	Point d'équivalence : les réactifs sont introduits dans les proportions stœchiométriques	
2.5	$n(H_3O^+) = C_AxV_E = 2.0x10^{-2}x10x10^{-3} = 2.0x10^{-4} \text{ mol}$	
2.6	$\frac{n_X}{1} = \frac{n(H_3O^+)}{1} \text{ donc } n(H_3O^+) = n_{X \text{ urines}} = 2,0x10^{-4} \text{ mol}$	
2.7	n_X dans 1,5L = (n_X dans 50 mL) x 30 = 6,0x10 ⁻³ mol	
2.8	m _{ac urique} = n _{ac urique} x M _{ac urique} = 6,0x10 ⁻³ x168 =1,0 g La masse est supérieure à 750 mg donc l'uricémie est trop forte (hyper uricémie)	
2.9	A la demi équivalence, $V = \frac{V_E}{2} = \frac{10}{2} = 5mL$ et pH = pKa	

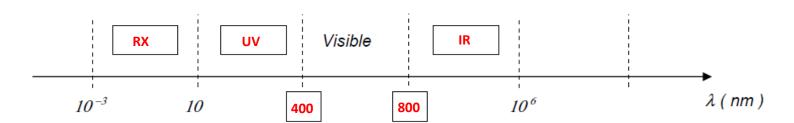

Graphiquement, pKa = 3,9 : valeur cohérente

Partie 3 radiographie des reins (8 points)		
Questions	Réponses attendues	
1	Voir feuille annexe	
2.1	c = célérité de la lumière dans le vide h = constante de Planck	
2.2	E en joule $\lambda \text{ en mètre}$	
3.1	Les corpuscules se nomment photons	
3.2	$\lambda = \frac{h \times c}{E} = \frac{6,62 \times 10^{-34} \times 3,0 \times 10^{8}}{3,3 \times 10^{-17}} = 6,0 \times 10^{-9} \text{ m soit 6 nm}$ $0,001 \text{ nm} < \lambda < 10 \text{ nm donc la radiation appartient bien au domaine des rayons X}$	
4	$c = \lambda v \text{ donc } v = \frac{c}{\lambda} = \frac{3.0 \times 10^8}{6.0 \times 10^{-9}} = 5.0 \times 10^{16} \text{ Hz}$	
5	Les rayons X sont absorbés par les éléments dont le numéro atomique est grand. Il se forme alors une tache blanche sur le cliché. La tache blanche correspond donc à une absorption par l'élément calcium donc par les cristaux.	
6.1	On peut réaliser de l'imagerie médicale avec les infra rouge	
6.2	Le nom de cette technique est la thermographie	
6.3	Elle est basée sur les différences de températures entre les différentes zones du corps	
6.4	$E = \frac{hxc}{\lambda_{.}} \text{ Plus } \lambda \text{ est grand, plus l'énergie est faible car on divise une constante (hxc) par } \\ \text{des valeurs de plus grandes Comme } \lambda_{IR} > \lambda_{RX}, \text{ l'énergie des radiations IR est inférieure à celle des radiations X}$	


Feuille annexe

NOM: CLASSE:
PRENOM:


Partie 1. Question 1.8 : Diagramme de prédominance



Partie 2 Question 2.2 Schéma à annoter

Partie 2 question 2.3 Courbe de dosage pH-métrique

